Multiple ergodic averages for variable polynomials
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper we study multiple ergodic averages for "good" variable polynomials. In particular, under an additional assumption, show that these converge to the expected limit, making progress related open problem posted by Frantzikinakis ([<xref ref-type="bibr" rid="b13">13</xref>,Problem 10]). These general convergence results imply several extensions of classical recurrence, combinatorial and number theoretical which are presented as well.</p>
منابع مشابه
Multiple Ergodic Averages for Three Polynomials and Applications
We find the smallest characteristic factor and a limit formula for the multiple ergodic averages associated to any family of three polynomials and polynomial families of the form {l1p, l2p, . . . , lkp}. We then derive several multiple recurrence results and combinatorial implications, including an answer to a question of Brown, Graham, and Landman, and a generalization of the Polynomial Szemer...
متن کاملErgodic Averages for Independent Polynomials and Applications
Szemerédi’s Theorem states that a set of integers with positive upper density contains arbitrarily long arithmetic progressions. Bergelson and Leibman generalized this, showing that sets of integers with positive upper density contain arbitrarily long polynomial configurations; Szemerédi’s Theorem corresponds to the linear case of the polynomial theorem. We focus on the case farthest from the l...
متن کاملPointwise Convergence of Some Multiple Ergodic Averages
We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...
متن کاملConvergence of weighted polynomial multiple ergodic averages
In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...
متن کاملMultifractal analysis of some multiple ergodic averages
In this paper we study the multiple ergodic averages 1 n n ∑ k=1 φ(xk, xkq , · · · , xkql−1 ), (xn) ∈ Σm on the symbolic space Σm = {0, 1, · · · ,m− 1}N ∗ where m ≥ 2, l ≥ 2, q ≥ 2 are integers. We give a complete solution to the problem of multifractal analysis of the limit of the above multiple ergodic averages. Actually we develop a non-invariant and non-linear version of thermodynamic forma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2022
ISSN: ['1553-5231', '1078-0947']
DOI: https://doi.org/10.3934/dcds.2022067